首页> 外文期刊>Journal of interconnection networks >MAX-MIN FAIR FLOW CONTROL SENSITIVE TO PRIORITIES
【24h】

MAX-MIN FAIR FLOW CONTROL SENSITIVE TO PRIORITIES

机译:优先级的最大-最小公平流控制

获取原文
获取原文并翻译 | 示例

摘要

Flow control is the dominant technique currently used in communication networks for preventing excess traffic from flooding the network, and for handling congestion. In rate-based flow control, transmission rates of sessions are adjusted in an end-to-end manner through a sequence of operations. In this work, we present a theory of max-min fair, rate-based flow control sensitive to priorities of different sessions, as a significant extension of the classical theory of max-min fair, rate-based flow control to networks supporting applications with diverse requirements on network resources. Each individual session bears a priority function, which maps the session's priority to a transmission rate; the priority is a working abstraction of the session's priority to bandwidth access. Priority functions enable the specification of requirements on bandwidth access by distributed applications, and the formal handling of such requirements. We present priority max-min fairness, as a novel and well motivated fairness condition which requires that assigned rates correspond, through the priority functions, to priorities comprising a max-min vector. We also introduce priority bottleneck algorithms gradually update a session's rate until when its priority is restricted on a priority bottleneck edge of the network. We establish a collection of interesting combinatorial properties of priority bottleneck algorithms. Most significantly, we show that they can only converge to priority max-min fairness. As an application of our general theory, we embed priority bottleneck algorithms in the more realistic optimistic framework for rate-based flow control. The optimistic framework allows for both decreases and increases of session rates. We exploit these additionally provided semantics to prove further combinatorial properties for the termination of priority bottleneck algorithms in the optimistic framework. We use these properties to conclude the first optimistic algorithms for efficient, max-min fair, rate-based flow control sensitive to priorities.
机译:流量控制是当前在通信网络中使用的主要技术,用于防止过多的流量淹没网络并处理拥塞。在基于速率的流控制中,会话的传输速率通过一系列操作以端到端的方式进行调整。在这项工作中,我们提出了对不同会话的优先级敏感的基于最大-最小公平,基于速率的流量控制的理论,作为对基于最大-最小公平,基于速率的流量控制的经典理论到支持应用程序的网络的重大扩展。对网络资源的各种要求。每个会话都具有优先级功能,该功能将会话的优先级映射到传输速率。优先级是会话对带宽访问的优先级的有效抽象。优先级功能可以规范分布式应用程序对带宽访问的要求,并对这些要求进行正式处理。我们提出了优先级最大-最小公平性,这是一种新颖且动机良好的公平性条件,它要求通过优先级函数将分配的速率对应于包含最大-最小向量的优先级。我们还介绍了优先级瓶颈算法,该算法会逐步更新会话的速率,直到其优先级限制在网络的优先级瓶颈边缘为止。我们建立了优先级瓶颈算法有趣的组合属性的集合。最重要的是,我们表明它们只能收敛到优先级最大-最小公平性。作为通用理论的一种应用,我们将优先级瓶颈算法嵌入到了更现实的基于速率的流量控制的乐观框架中。乐观的框架既可以降低会话率,也可以提高会话率。我们利用这些额外提供的语义来证明乐观框架中终止优先瓶颈算法的进一步组合属性。我们使用这些属性来总结第一个乐观算法,以实现对优先级敏感的高效,最大,最小,公平,基于速率的流量控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号