首页> 外文期刊>Journal of intelligent material systems and structures >Developing a beam formulation for semi-crystalline two-way shape memory polymers
【24h】

Developing a beam formulation for semi-crystalline two-way shape memory polymers

机译:为半结晶双向形状记忆聚合物开发光束配方

获取原文
获取原文并翻译 | 示例

摘要

In this research, the bending of a two-way shape memory polymer beam is examined implementing a one-dimensional phenomenological macroscopic constitutive model into Euler-Bernoulli and von-Karman beam theories. Since bending loading is a fundamental problem in engineering applications, a combination of bending problem and two-way shape memory effect capable of switching between two temporary shapes can be used in different applications, for example, thermally activated sensors and actuators. Shape memory polymers as a branch of soft materials can undergo large deformation. Hence, Euler-Bernoulli beam theory does not apply to the bending of a shape memory polymer beam where moderate rotations may occur. To overcome this limitation, von-Karman beam theory accounting for the mid-plane stretching as well as moderate rotations can be employed. To investigate the difference between the two beam theories, the deflection and rotating angles of a shape memory polymer cantilever beam are analyzed under small and moderate deflections and rotations. A semi-analytical approach is used to inspect Euler-Bernoulli beam theory, while finite-element method is employed to study von-Karman beam theory. In the following, a smart structure is analyzed using a prepared user-defined subroutine, VUMAT, in finite-element package, ABAQUS/EXPLICIT. Utilizing generated user-defined subroutine, smart structures composed of shape memory polymer material can be analyzed under complex loading circumstances through the two-way shape memory effect.
机译:在该研究中,检查双向形状记忆聚合物光束的弯曲,将一维现象学宏观本构模型实现成Euler-Bernoulli和von -Karman光束理论。由于弯曲加载是工程应用中的基本问题,因此可以在不同的应用中使用弯曲问题和双向形状记忆效果,例如在两个临时形状之间切换,例如热激活的传感器和致动器。形状记忆聚合物作为软材料的分支可以经历大变形。因此,Euler-Bernoulli光束理论不适用于形状记忆聚合物光束的弯曲,其中可能发生中等旋转。为了克服这种限制,可以采用von -karman光束理论核对中间平面拉伸以及中等旋转。为了研究两个光束理论之间的差异,在小和中等偏转和旋转下分析形状记忆聚合物悬臂梁的偏转和旋转角度。半分析方法用于检查Euler-Bernoulli光束理论,同时采用有限元方法研究von-Karman光束理论。在下文中,使用准备的用户定义的子程序,VUMAT,在有限元包中,ABAQUS /显式进行分析智能结构。利用产生的用户定义子程序,可以通过双向形状记忆效应在复杂的加载情况下分析由形状记忆聚合物材料组成的智能结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号