首页> 外文期刊>Journal of intelligent material systems and structures >Modeling of Progressive Damage in the Adhesive Bond Layers of Actuated Plates
【24h】

Modeling of Progressive Damage in the Adhesive Bond Layers of Actuated Plates

机译:致动板胶合层中渐进式损伤的建模

获取原文
获取原文并翻译 | 示例

摘要

This article discusses finite element modeling of progressive damage in the adhesive bond layers of actuated plates and investigates the reduction in actuation capacity caused by the damaged bond layers. The primary challenge posed by this class of problems stems from the vast range of geometric scales that are represented, with the thickness of the adhesive layer representing the smallest scale, the overall thickness of the actuated plate representing the intermediate scale, and the in-plane dimensions of the plate representing the largest scale. In multiscale problems, the overall efficiency of the numerical methodology is of paramount importance, thus model development is guided by the need to obtain a sufficiently accurate solution at an acceptable computational expense. In this study, this goal is achieved through the use of a hierarchical, displacement-based, 2-D finite element model that includes the first-order shear deformation (FSD) model, Type Ⅰ layerwise models (LW1) and Type Ⅱ layerwise models (LW2) as special cases. Both the LW1 layerwise model and the more familiar FSD model use a reduced constitutive matrix that is based on the assumption of zero transverse normal stress; however, the LW1 model includes discrete layer transverse shear effects via in-plane displacement components that are C~0 continuous with respect to the thickness coordinate. The LW2 layerwise model utilizes a full 3-D constitutive matrix and includes both discrete layer transverse shear effects and discrete layer transverse normal effects by expanding all three displacement components as C~0 continuous functions of the thickness coordinate. The hierarchical finite element model incorporates a 3-D continuum damage mechanics model that predicts local orthotropic damage evolution and local stiffness reduction at the geometric scale represented by the individual material ply or, in the case of layerwise models, by the individual numerical layer. The results clearly demonstrate that the resulting model can efficiently simulate progressive damage in the adhesive layers. For rectangular actuator patches, the adhesive damage is highest near the corners of the actuator and is driven primarily by local concentrations in the transverse normal and transverse shear stresses. In contrast to previous studies that have shown that the inclusion of discrete layer transverse normal stress does not significantly influence the predicted global deformations, the present study shows that the transverse normal stress has a very significant effect in the initiation and progression of localized damage in the adhesive layers.
机译:本文讨论了致动板的粘合剂层中渐进式损坏的有限元建模,并研究了由损坏的粘合层导致的致动能力降低。这类问题带来的主要挑战来自所表示的几何比例尺范围广泛,其中粘合剂层的厚度代表最小比例尺,致动板的总厚度代表中间比例尺,并且平面内代表最大比例的板的尺寸。在多尺度问题中,数值方法的整体效率至关重要,因此,模型开发受需要以可接受的计算费用获得足够准确的解决方案的指导。在这项研究中,该目标是通过使用基于层次的,基于位移的二维有限元模型来实现的,该模型包括一阶剪切变形(FSD)模型,Ⅰ型分层模型(LW1)和Ⅱ型分层模型(LW2)作为特殊情况。 LW1分层模型和更为熟悉的FSD模型均使用基于零横向法向应力的假设的简化本构矩阵。然而,LW1模型通过平面内位移分量包括离散层横向剪切效应,该位移相对于厚度坐标为C〜0连续。 LW2分层模型利用完整的3D本构矩阵,并通过将所有三个位移分量扩展为厚度坐标的C〜0连续函数,同时包含离散层横向剪切效应和离散层横向法向效应。分层有限元模型结合了3-D连续损伤力学模型,该模型在由单个材料层代表的几​​何尺度上预测局部正交异性损伤的演变和局部刚度降低,对于分层模型,则由单个数值层代表。结果清楚地表明,所得模型可以有效地模拟粘合剂层中的渐进式损坏。对于矩形致动器贴片,粘合剂损坏在致动器的拐角附近最高,并且主要由横向法向应力和横向剪应力中的局部浓度驱动。与以前的研究表明,包含离散层的横向法向应力不会显着影响预计的整体变形相比,本研究表明,横向法向应力在局部损伤的发生和发展中具有非常重要的作用。粘合剂层。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号