首页> 美国政府科技报告 >Modeling of Progressive Damage in the Adhesive Bond Layers of Actuated Plates
【24h】

Modeling of Progressive Damage in the Adhesive Bond Layers of Actuated Plates

机译:作者:张莹莹,王莹,王莹,工程力学ENGINEERING mECHaNICs驱动板粘接层逐步损伤模型

获取原文

摘要

This report discusses finite element modeling of progressive damage in the adhesive bond layers of actuated plates and investigates the reduction in actuation capacity caused by the damaged bond layers. The primary challenge posed by this class of problems stems from the vast range of geometric scales that are represented, with the thickness of the adhesive layer representing the smallest scale, the overall thickness of the actuated plate representing the intermediate scale and the in-plane dimensions of the plate representing the largest scale. In multiscale problems, the overall efficiency of the numerical methodology is of paramount importance, thus model development is guided by the need to obtain a sufficiently accurate solution at an acceptable computational expense. In this study, this goal is achieved through the use of a hierarchical, displacement-based, 2-D finite element model that includes the first-order shear deformation model (FSD), type-I layerwise models (LW1) and type-II layerwise models (LW2) as special cases. Both the LW1 layerwise model and the more familiar FSD model use a reduced constitutive matrix that is based on the assumption of zero transverse normal stress; however, the LW1 model includes discrete layer transverse shear effects via in-plane displacement components that are C(exp-0) continuous with respect to the thickness coordinate. The LW2 layerwise model utilizes a full 3-D constitutive matrix and includes both discrete layer transverse shear effects and discrete layer transverse normal effects by expanding all three displacement components as C(exp-0). continuous functions of the thickness coordinate. The results clearly demonstrate that the resulting model can efficiently simulate progressive damage in the adhesive layers.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号