首页> 外文期刊>Journal of intelligent material systems and structures >Finite element analysis of electroactive and magnetoactive coupled behaviors in multi-field origami structures
【24h】

Finite element analysis of electroactive and magnetoactive coupled behaviors in multi-field origami structures

机译:多场折纸结构中电活性和磁活性耦合行为的有限元分析

获取原文
获取原文并翻译 | 示例
           

摘要

Active origami-inspired designs, which incorporate active materials such as electroactive polymers and magnetoactive elastomers into self-folding structures, have shown good promise in engineering applications. In this article, finite element analysis models are developed for several bending and folding configurations that incorporate a combination of active and passive material layers, such as electroactive polymer-actuated unimorph benders based on single and multilayer electroactive polymers, electroactive polymer-actuated notched unimorph folding configurations, and a multi-field actuated bimorph configuration. Constitutive relations are developed for both electrostrictive and magnetoactive materials to model the coupled behaviors explicitly. Shell elements are adopted for their capacity of modeling thin films, relatively low computational cost, and ability to model the intrinsic coupled behaviors in the active materials under consideration. The electrostrictive coefficients are measured and then used as input in the constitutive modeling of the coupled behavior. The magnetization of the magnetoactive elastomer is measured and then used to calculate the magnetic torque as a function of the special orientation, which leads to spatial deformation of the magnetoactive elastomers. The objective of the study is to validate the constitutive models implemented through the finite element analysis method to simulate multi-field coupled behaviors of the active origami configurations. Through quantitative comparisons, simulation results show good agreement with experimental data. By investigating the impact of material selection, location, and geometric parameters, this finite element analysis approach can be used in design of self-folding structures, reducing trial-and-error iterations in experiments.
机译:主动折纸风格的设计将诸如电活性聚合物和磁活性弹性体等活性材料结合到自折叠结构中,在工程应用中显示出良好的前景。在本文中,针对几种弯曲和折叠配置开发了有限元分析模型,这些模型结合了主动材料层和被动材料层的组合,例如基于单层和多层电活性聚合物的电活性聚合物驱动的单压电晶片弯曲器,电活性聚合物驱动的缺口单压电晶片折叠配置,以及多场驱动的双压电晶片配置。对电致伸缩材料和磁活性材料都建立了本构关系,以明确地模拟耦合行为。采用壳单元是因为它们具有对薄膜进行建模的能力,相对较低的计算成本以及对所考虑的活性材料中的固有耦合行为进行建模的能力。测量电致伸缩系数,然后将其用作耦合行为的本构模型中的输入。测量磁活性弹性体的磁化强度,然后将其用于计算特定方向的函数的磁转矩,这将导致磁活性弹性体的空间变形。该研究的目的是验证通过有限元分析方法实现的本构模型,以模拟活动折纸配置的多场耦合行为。通过定量比较,仿真结果与实验数据吻合良好。通过调查材料选择,位置和几何参数的影响,可以将这种有限元分析方法用于自折叠结构的设计中,从而减少实验中的反复试验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号