首页> 外文会议>ASME conference on smart materials, adaptive structures and intelligent systems >Finite Element Analysis of Electroactive and Magnetoactive Coupled Behaviors in Multi-Field Origami Structures
【24h】

Finite Element Analysis of Electroactive and Magnetoactive Coupled Behaviors in Multi-Field Origami Structures

机译:多场折纸结构中电和磁活性耦合行为的有限元分析

获取原文

摘要

Active origami designs, which incorporate smart materials such as electroactive polymers (EAPs) and magnetoactive elastomers (MAEs) into mechanical structures, have shown good promise in engineering applications. In this study, finite element analysis (FEA) models are developed using COMSOL Multiphysics software for two configurations that incorporate a combination of active and passive material layers, namely: 1) a single-notch unimorph folding configuration actuated using only external electric field and 2) a bimorph configuration which is actuated using both electric and magnetic (i.e. multifield) stimuli. Constitutive relations are developed for both electrostrictive and magnetoactive materials to model the coupled behaviors directly. Shell elements are adopted for their capacity of modeling thin films, reduction of computational cost and ability to model the intrinsic coupled behaviors in the active materials under consideration. A microstructure-based constitutive model for electromechanical coupling is introduced to capture the nonlinearity of the EAP's relaxor ferroelectric response; the electrostrictive coefficients are then used as input in the constitutive modeling of the coupled behavior. The magnetization of the MAE is measured by experiment and then used to calculate magnetic torque under specified external magnetic field. The objective of the study is to verify the effectiveness of the constitutive models to simulate multi-field coupled behaviors of the active origami configurations. Through quantitative comparisons, simulation results show good agreement with experimental data, which is a good validation of the shell models. By investigating the impact of material selection, location, and geometric parameters, FEA can be used in design, reducing trial-and-error iterations in experiments.
机译:主动折纸设计将诸如电活性聚合物(EAP)和磁活性弹性体(MAE)之类的智能材料结合到机械结构中,在工程应用中显示出良好的前景。在这项研究中,使用COMSOL Multiphysics软件针对两种配置结合了主动材料层和被动材料层的组合开发了有限元分析(FEA)模型,即:1)仅使用外部电场驱动的单缺口单晶折叠结构,以及2 )双压电晶片配置,可同时使用电和磁(即多场)刺激。对电致伸缩材料和磁活性材料都建立了本构关系,以直接对耦合行为进行建模。采用壳单元是因为它们具有对薄膜进行建模的能力,降低了计算成本以及对正在考虑的活性材料中的固有耦合行为进行建模的能力。引入了基于微结构的机电耦合本构模型,以捕获EAP弛豫铁电响应的非线性。然后,将电致伸缩系数用作耦合行为的本构模型的输入。通过实验测量MAE的磁化强度,然后将其用于计算指定外部磁场下的磁转矩。该研究的目的是验证本构模型模拟活动折纸配置的多场耦合行为的有效性。通过定量比较,仿真结果与实验数据吻合良好,这是对壳模型的良好验证。通过调查材料选择,位置和几何参数的影响,可以将FEA用于设计中,从而减少实验中的反复试验迭代。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号