首页> 外文会议>ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems >Finite Element Analysis of Electroactive and Magnetoactive Coupled Behaviors in Multi-Field Origami Structures
【24h】

Finite Element Analysis of Electroactive and Magnetoactive Coupled Behaviors in Multi-Field Origami Structures

机译:多场折纸结构中电活性和磁热耦合行为的有限元分析

获取原文

摘要

Active origami designs, which incorporate smart materials such as electroactive polymers (EAPs) and magnetoactive elastomers (MAEs) into mechanical structures, have shown good promise in engineering applications. In this study, finite element analysis (FEA) models are developed using COMSOL Multiphysics software for two configurations that incorporate a combination of active and passive material layers, namely: 1) a single-notch unimorph folding configuration actuated using only external electric field and 2) a bimorph configuration which is actuated using both electric and magnetic (i.e. multifield) stimuli. Constitutive relations are developedfor both electrostrictive and magnetoactive materials to model the coupled behaviors directly. Shell elements are adopted for their capacity ofmodeling thin films, reduction of computational cost and ability to model the intrinsic coupled behaviors in the active materials under consideration. A microstructure-based constitutive model for electromechanical coupling is introduced to capture the nonlinearity of the EAP's relaxor ferroelectric response; the electrostrictive coefficients are then used as input in the constitutive modeling of the coupled behavior. The magnetization of the MAE is measured by experiment and then used to calculate magnetic torque under specified external magnetic field. The objective of the study is to verify the effectiveness of the constitutive models to simulate multi-field coupled behaviors of the active origami configurations. Through quantitative comparisons, simulation results show good agreement with experimental data, which is a good validation of the shell models. By investigating the impact of material selection, location, and geometric parameters, FEA can be used in design, reducing trial-and-error iterations in experiments.
机译:活性折纸设计,其将诸如电活性聚合物(EAPS)和磁性弹性体(MAES)的智能材料掺入机械结构中,在工程应用中表现出良好的承诺。在该研究中,有限元分析(FEA)模型是使用COMSOL Multiphysics软件开发的,用于两种配置,该配置包括主动和无源材料层的组合,即:1)仅使用外部电场和2的单个凹口无寸称的折叠配置。 )使用电磁和磁性(即多壳)刺激来致动的Bimorph配置。构成关系是针对电致伸缩性和磁性材料直接模拟耦合行为的影响。采用壳体元素来实现薄膜的能力,降低计算成本和在所考虑的活性材料中建模内在耦合行为的能力。引入了一种基于微结构的机电耦合结构型模型,以捕获EAP的松弛剂铁电反应的非线性;然后将电致力系数用作耦合行为的本构型建模中的输入。通过实验测量MAE的磁化,然后用于在指定的外部磁场下计算磁性扭矩。该研究的目的是验证本结构型模型的有效性,以模拟有源折纸配置的多场耦合行为。通过定量比较,仿真结果与实验数据显示出良好的一致性,这是壳牌模型的良好验证。通过调查材料选择,位置和几何参数的影响,可以在设计中使用FEA,减少实验中的试验和错误迭代。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号