首页> 外文期刊>Journal of information science and engineering >Towards Understanding Child Language Acquisition: An Unsupervised Multimodal Neural Network Approach
【24h】

Towards Understanding Child Language Acquisition: An Unsupervised Multimodal Neural Network Approach

机译:努力理解儿童语言习得:一种无监督的多模态神经网络方法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an unsupervised, multimodal, neural network model of early child language acquisition that takes into account the child's communicative intentions as well as the multimodal nature of language. The model exhibits aspects of one-word child language such as generalisation to new and unforeseen utterances, a U-shaped learning trajectory and a vocabulary spurt. A probabilistic gating mechanism that predisposes the model to utter single words at the onset of training and two-words as training progresses enables the model to exhibit the gradual and continuous transition between the one-word and two-word stages as observed in children.
机译:本文提出了一种早期儿童语言习得的无监督,多模态,神经网络模型,该模型考虑了儿童的交际意图以及语言的多模态性质。该模型展示了单字儿童语言的各个方面,例如对新的和无法预料的话语的概括,U形学习轨迹和词汇突增。概率门控机制使模型易于在训练开始时说出单个单词,并随着训练的进行而说出两个单词,从而使模型展现出在儿童中观察到的一个单词和两个单词阶段之间的逐渐和连续过渡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号