首页> 外文期刊>Journal of information science and engineering >Improving Tooth Outline Detection by Active Appearance Model with Intensity-Diversification in Intraoral Radiographs
【24h】

Improving Tooth Outline Detection by Active Appearance Model with Intensity-Diversification in Intraoral Radiographs

机译:积极的外观模型通过口内射线照相中的强度分散提高牙齿轮廓检测

获取原文
获取原文并翻译 | 示例

摘要

Automatic tooth detection of intraoral radiographs shows progressively importance in massive forensic verification. Since intraoral radiographs acquired from small oral cavity reveal great variation of intensity and distortion of structure morphology, automatic tooth detection poses a huge challenge. Enhancement methods may not effectively augment informative grayscale gradient. We proposed an intensity-diversification method to increase the detection rate of the tooth through different intensity spaces. The diversification process attempted to explore the image information that was expressible by intensity transform function. In this study, gamma transform was employed to generate different intensity-diversified images from the test radiograph. Deformable statistical Active Appearance Models (AAM) was used to detect a possible mandibular molar tooth region on the images. The AAM regions detected from intensity-diversified images were compared and ranked using three methods: histogram-based, edge-based and crown-root approximation-based methods. Since edge-based and crown-root approximation-based methods revealed higher accuracies, the top five matches in the ranking lists from these two methods were consequently voted by the Borda count to get the most suspected tooth region. Totally, 419 images from 367 patients were used in this study, 100 images for training and 319 images for testing. In our results, the correct detection rate was 71%, comparing to only 45% detection rate of the images without intensity-diversification. AAM outlines were detected in all 319 images, but not all of them belonged to valid tooth regions. In original images, 144 images had valid tooth outlines detected by AAM; 175 images were detected with invalid tooth regions. The true positive rate is 45% and the false positive rate 55%. With intensity-diversification and proposed matching methods, 227 AAM outlines detected were valid tooth regions, and 92 outlines were invalid tooth regions. The true positive rate is 71% and false positive 29%. This results supported that intensity-diversification process could improve automatic detection rate of mandibular molar in intraoral radiographs.
机译:口腔内X光片的自动牙齿检测在大规模法医验证中显示出越来越重要的意义。由于从小口腔获得的口内射线照相显示强度和结构形态的畸变很大,因此自动牙齿检测提出了巨大的挑战。增强方法可能无法有效地增强信息灰度梯度。我们提出了一种强度分散方法,以通过不同的强度空间提高牙齿的检测率。多元化过程试图探索强度变换功能可以表达的图像信息。在这项研究中,伽马变换被用来从测试射线照片生成不同强度的图像。使用可变形的统计活动外观模型(AAM)来检测图像上可能存在的下颌磨牙区域。从强度分散的图像中检测到的AAM区域使用三种方法进行比较和排名:基于直方图,基于边缘和基于冠根近似的方法。由于基于边缘的方法和基于冠根近似的方法显示出较高的准确性,因此,这两种方法在排名表中排在前五位的比赛被博尔达(Borda)计数票选为最可疑的牙齿区域。本研究总共使用了367位患者的419张图像,用于训练的100张图像和用于测试的319张图像。在我们的结果中,正确的检测率为71%,而没有强度变化的图像的正确检测率为45%。在所有319张图像中都检测到了AAM轮廓,但并非所有轮廓都属于有效牙齿区域。在原始图像中,有144张图像具有AAM检测到的有效牙齿轮廓;检测到175张带有无效牙齿区域的图像。正确率是45%,错误率是55%。通过强度分散和提出的匹配方法,检测到227个AAM轮廓为有效牙齿区域,而92个轮廓为无效牙齿区域。正确率是71%,错误率是29%。这一结果支持强度变化过程可以提高口腔X光片中下颌磨牙的自动检测率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号