首页> 外文OA文献 >Segmentation of Radiographs of Hands with Joint Damage Using Customized Active Appearance Models
【2h】

Segmentation of Radiographs of Hands with Joint Damage Using Customized Active Appearance Models

机译:用定制主动外观模型分割关节损伤手部X线片

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper is part of a project that investigates the possibilities of automating the assessment of joint damagein hand radiographs. Our goal is to design a robust segmentationalgorithm for the hand skeleton. The algorithm isudbased on active appearance models (AAM) [1], which have been used for hand segmentation before [2]. The results will be used in the future for radiographic assessment of rheumatoid arthritis and the early detection of joint damage. New in this work with respect to [2] is the use of multiple object warps for each individual bone in a single AAM. This method prevents modelling and reconstruction defects caused when warping overlapping objects. This makes the algorithm more robust in cases where joint damage is present. The current implementation of the model includes the metacarpals, the phalanges, and the carpal region. For a first experimental evaluation a collection of 50 hand radiographs has been gathered. The image data set was split into a training set (40) and a test set (10) in order to evaluate the algorithm’s performance. First results show that in 8 images from the test set the bone contours are detected correctly within 1.3 mm (1 STD) at 15 pixels/cm resolution. In two images not all contours are detected correctly. Possibly this is caused by extreme deviations in these images that have not yet been incorporated in the model due to a limited training set. More training examples are needed to optimize the AAM and improve the quality and reliability of the results.
机译:本文是一个项目的一部分,该项目研究了自动评估手部X射线照片中关节损伤的可能性。我们的目标是为手骨架设计一个鲁棒的分割算法。该算法基于主动外观模型(AAM)[1],在[2]之前已用于手部分割。该结果将在将来用于类风湿关节炎的影像学评估和关节损伤的早期检测。关于[2],这项工作的新内容是在单个AAM中为每个骨骼使用多个对象变形。此方法可防止在扭曲重叠对象时引起的建模和重建缺陷。这在存在关节损伤的情况下使算法更加健壮。该模型的当前实现包括掌骨,指骨和腕骨区域。为了进行第一次实验评估,已收集了50幅射线照相照片。图片数据集分为训练集(40)和测试集(10),以评估算法的性能。初步结果显示,在来自测试集的8张图像中,以15像素/ cm的分辨率正确地在1.3 mm(1 STD)范围内正确检测到了骨骼轮廓。在两幅图像中,并非所有轮廓都被正确检测到。可能是由于训练集有限,这些图像中尚未包含在模型中的极端偏差引起的。需要更多的培训示例来优化AAM并提高结果的质量和可靠性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号