首页> 外文期刊>Journal of information science and engineering >Novel Approaches for Privacy Preserving Data Mining in k-Anonymity Model
【24h】

Novel Approaches for Privacy Preserving Data Mining in k-Anonymity Model

机译:k-匿名模型中用于隐私保护数据挖掘的新方法

获取原文
获取原文并翻译 | 示例

摘要

In privacy preserving data mining, anonymization based approaches have been used to preserve the privacy of an individual. Existing literature addresses various anonymization based approaches for preserving the sensitive private information of an individual. The k-anonymity model is one of the widely used anonymization based approach. However, the anonymization based approaches suffer from the issue of information loss. To minimize the information loss various state-of-the-art anonymization based clustering approaches viz. Greedy k-member algorithm and Systematic clustering algorithm have been proposed. Among them, the Systematic clustering algorithm gives lesser information loss. In addition, these approaches make use of all attributes during the creation of an anonymized database. Therefore, the risk of disclosure of sensitive private data is higher via publication of all the attributes. In this paper, we propose two approaches for minimizing the disclosure risk and preserving the privacy by using systematic clustering algorithm. First approach creates an unequal combination of quasi-identifier and sensitive attribute. Second approach creates an equal combination of quasi-identifier and sensitive attribute. We also evaluate our approach empirically focusing on the information loss and execution time as vital metrics. We illustrate the effectiveness of the proposed approaches by comparing them with the existing clustering algorithms.
机译:在保护隐私的数据挖掘中,基于匿名的方法已被用于保护个人的隐私。现有文献提出了各种基于匿名的方法来保存个人的敏感私人信息。 k-匿名模型是广泛使用的基于匿名的方法之一。然而,基于匿名的方法遭受信息丢失的问题。为了使信息损失最小化,各种基于匿名的最新技术聚类方法。提出了贪婪k元算法和系统聚类算法。其中,系统聚类算法可减少信息丢失。此外,这些方法在创建匿名数据库时会利用所有属性。因此,通过发布所有属性,泄露敏感私人数据的风险更高。在本文中,我们提出了两种使用系统聚类算法来最小化披露风险和保护隐私的方法。第一种方法创建了准标识符和敏感属性的不平等组合。第二种方法创建了准标识符和敏感属性的相等组合。我们还根据经验评估我们的方法,重点是将信息丢失和执行时间作为重要指标。我们通过将它们与现有的聚类算法进行比较来说明所提出方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号