首页> 外文期刊>Journal of information and computational science >An Evaluation of Several Fusion Algorithms for Multi-sensor Tracking System
【24h】

An Evaluation of Several Fusion Algorithms for Multi-sensor Tracking System

机译:多传感器跟踪系统几种融合算法的评价

获取原文
获取原文并翻译 | 示例

摘要

In multi-sensor environment, two kinds of methodologies have been used for fusion, which are measurement-level fusion and track-level fusion. Generally, the measurement-level fusion is optimal but computationally inefficient, and the track-level method is more efficient but suboptimal. In most cases, the later seems more attractive. However, in track-level fusion algorithms, estimated state vector from each sensor is not independent because of the common process noises. Based on the facts, many fusion algorithms, such as weighted covariance, information matrix and covariance intersection, were derived to combine the local estimates. In this paper, a performance evaluation is executed to study the performance of various track-to-track fusion algorithms from aspects of fusion accuracy, feedback and process noises. Tacking results of three fusion algorithms are compared with each other using Monte Carlo simulation.
机译:在多传感器环境中,已使用两种方法进行融合,即测量级融合和轨道级融合。通常,测量级别的融合是最佳的,但计算效率低下,而跟踪级别的方法则更有效,但次优。在大多数情况下,后者似乎更具吸引力。但是,在跟踪级融合算法中,由于常见的过程噪声,每个传感器的估计状态向量不是独立的。基于这些事实,导出了许多融合算法,例如加权协方差,信息矩阵和协方差交集,以组合局部估计。本文进行了性能评估,从融合精度,反馈和过程噪声等方面研究了各种轨道间融合算法的性能。使用Monte Carlo模拟将三种融合算法的粘性结果进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号