首页> 外文期刊>Journal of information and computational science >The Study of Semi-Supervised Learning Algorithm for Web Information Classification
【24h】

The Study of Semi-Supervised Learning Algorithm for Web Information Classification

机译:Web信息分类的半监督学习算法研究

获取原文
获取原文并翻译 | 示例

摘要

The paper reports a study on information categorizing based on high efficient feature selection and comprehensive semi-supervised learning algorithm. Feature selections or conversions are performed using maximum mutual information including linear and non-linear feature conversions. Entropy is made use of and extended to find right features commendably with machine learning method. Fuzzy Partition Clustering Method is presented and used to obtain a few labeled samples and some external clusters automatically by measuring the similarity of clustering correlation documents. So classification bases are found for supervised learning. Furthermore, Naive Bayes augment learning is combined to design and learn categorizers. And the approach of estimating the loss of classifying error facilitates to balance the selection of candidates. The all-around learning algorithm can greatly improve the precision and efficiency of web information classification.
机译:本文报道了基于高效特征选择和综合半监督学习算法的信息分类研究。使用包括线性和非线性特征转换在内的最大互信息来执行特征选择或转换。熵被利用并被扩展以找到与机器学习方法相对应的正确特征。提出了模糊分区聚类方法,通过测量聚类相关文档的相似度,自动获得一些标记样本和一些外部聚类。因此找到了监督学习的分类基础。此外,朴素贝叶斯增强学习被组合到设计和学习分类器中。估计分类错误损失的方法有助于平衡候选人的选择。全方位学习算法可以大大提高网络信息分类的准确性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号