首页> 外文期刊>Journal of information and computational science >Local Energy-Driven Active Contour Model with a Global Minimum
【24h】

Local Energy-Driven Active Contour Model with a Global Minimum

机译:具有全局最小值的局部能量驱动主动轮廓模型

获取原文
获取原文并翻译 | 示例

摘要

The Mumford-Shah model is a powerful and robust segmentation technique. However ,the numerical method of solving the Mumford-Shah model is difficult to implement, and often gets into a local minimum. In this paper,we propose a novel active contour model for image segmentation based on Chan-Vese model, in which the curve driven by local energy within a window around the curve,can converge to a global stationary minimum. The novel active contour model utilizes fully the region and boundary information in the whole image domain. In the new energy functional of our model, the modified data fitting term can guarantee a global stationary solution, and the alignment term can help to improve the speed of cure evolution. The experiment results on synthetic and medical MRI images show that, our novel active contour model obtain a stable segmentation result and the final result does not depend on the iteration number of algorithm.
机译:Mumford-Shah模型是一种强大而强大的分割技术。但是,求解Mumford-Shah模型的数值方法难以实现,并且常常陷入局部最小值。在本文中,我们提出了一种基于Chan-Vese模型的新颖的主动轮廓线图像分割模型,其中由曲线周围的窗口内的局部能量驱动的曲线可以收敛到全局平稳最小值。新颖的主动轮廓模型充分利用了整个图像域中的区域和边界信息。在我们模型的新能源功能中,修改后的数据拟合项可以保证整体平稳解,而对齐项可以帮助提高固化速度。在合成和医学MRI图像上的实验结果表明,我们新颖的主动轮廓模型获得了稳定的分割结果,而最终结果与算法的迭代次数无关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号