首页> 外文期刊>Journal of information and computational science >Keyphrase Extraction Based on Topic Relevance and Term Association
【24h】

Keyphrase Extraction Based on Topic Relevance and Term Association

机译:基于主题相关性和术语关联的关键词提取

获取原文
获取原文并翻译 | 示例

摘要

Keyphrases are concise representation of documents and usually are extracted directly from the original text. This paper proposes a novel approach to extract keyphrases. This method proposes two metrics, named topic relevance and term association respectively, for determining whether a term is a keyphrase. Using Wikipedia knowledge and betweenness computation, we compute these two metrics and combine them to extract important phrases from the text. Experimental results show the effectiveness of the proposed approach for keyphrases extaction.
机译:关键字短语是文档的简洁表示,通常直接从原始文本中提取。本文提出了一种提取关键短语的新方法。该方法提出两个度量,分别命名为主题相关性和术语关联,用于确定术语是否为关键短语。使用维基百科的知识和中间度计算,我们可以计算这两个度量,并将它们组合以从文本中提取重要的短语。实验结果表明,该方法对于关键短语提取是有效的。

著录项

  • 来源
    《Journal of information and computational science》 |2010年第1期|P.293-299|共7页
  • 作者单位

    Key Laboratory of Computational Linguistics (Peking University), Ministry of Education Beijing 100871, China;

    rnKey Laboratory of Computational Linguistics (Peking University), Ministry of Education Beijing 100871, China;

    rnDepartment of Computing, The Hong Kong Polytechnic University, Kowloon, Hong Kong;

    Key Laboratory of Computational Linguistics (Peking University), Ministry of Education Beijing 100871, China;

    rnInstitute of Linguistics, Chinese Academy of Social Sciences, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    keyphrase extraction; topic relevance; term association; betweenness;

    机译:关键字提取;主题相关性;术语关联;中间性;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号