首页> 外文期刊>Journal of information and computational science >Machine Transcription of Guqin Tablature and Automatic Music Rhythm Tagging
【24h】

Machine Transcription of Guqin Tablature and Automatic Music Rhythm Tagging

机译:古琴制图的机器翻译和自动音乐节奏标记

获取原文
获取原文并翻译 | 示例

摘要

Guqin is an ancient Chinese musical instrument of the zither family. It is an important work for guqin researchers and artist to transcribe old guqin tablature into a playable form (e.g. staves). Since guqin tablature does not indicate tempo or rhythm, the main part of the transcription is to work it out. This paper introduces the research on automatic transcription of guqin tablature, and generalizes it to the problem of music rhythm tagging. Music rhythm tagging is computing the possible rhythm information according to a series of pitch values as input parameters. We employ an n-gram model based method and compare it with the maximum entropy model and a baseline method. An average result of 65% accuracy is achieved in our experiment. This paper also discusses the difference between the evaluation criteria for the quality of music rhythm tagging and the one of part-of-speech tagging. We present DIS subjective test, which tries to determine how machine overtake human brains in a specific task given. Automatic music rhythm tagging is a good case for the research of aesthetic modeling. In the other hand, the introduction of aesthetic model could possibly bring a marked improvement for the tagging system in the preference tests.
机译:古琴是古筝家族的一种古老的中国乐器。对于古琴研究人员和艺术家来说,将旧的古琴谱抄录成可演奏的形式(例如五线谱)是一项重要的工作。由于古琴的制表法并不表示节奏或节奏,因此转录的主要部分是对其进行计算。本文介绍了古琴谱自动转录的研究,并将其概括为音乐节奏标签的问题。音乐节奏标记是根据一系列的音高值作为输入参数来计算可能的节奏信息。我们采用基于n-gram模型的方法,并将其与最大熵模型和基线方法进行比较。在我们的实验中,平均准确度达到65%。本文还讨论了音乐节奏标记质量评估标准与词性标记之一之间的区别。我们提出了DIS主观测试,该测试试图确定在给定的特定任务中机器如何超越人脑。自动音乐节奏标记是美学建模研究的一个很好的例子。另一方面,审美模型的引入可能会给偏好测试中的标记系统带来显着的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号