首页> 外文期刊>Journal of information and computational science >A Method for Traffic Signs Recognition Using PCA and LDA
【24h】

A Method for Traffic Signs Recognition Using PCA and LDA

机译:基于PCA和LDA的交通标志识别方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a novel method for traffic signs recognition based on PCA and LDA is proposed. To enlarge the classification distance between two different traffic signs samples, normalization of within-class means is considered firstly. Then the eigen space of all samples is calculated using the Principal Component Analysis (PCA) method and Linear Discriminant Analysis (LDA) method, respectively. Next, the above two eigen spaces is mixed to produce the best classification space. Then the training and testing samples are projected into the mixtur feature space to get their features, respectively. The Nearest Neighbor Distance (NND) method is employed as a classifier for traffic signs discrimination. The performance of the proposed method is validated with a validation test database consisting of 40 regulatory traffic signs image. Experimental results demonstrate that the proposed method is efficient and effective.
机译:提出了一种基于PCA和LDA的交通标志识别方法。为了扩大两个不同交通标志样本之间的分类距离,首先考虑了类内均值的归一化。然后分别使用主成分分析(PCA)方法和线性判别分析(LDA)方法计算所有样本的本征空间。接下来,将上述两个特征空间混合以产生最佳分类空间。然后将训练样本和测试样本投影到mixtur特征空间中,分别获得其特征。最近邻距离(NND)方法被用作交通标志识别的分类器。所提出的方法的性能由包含40个管制交通标志图像的验证测试数据库进行验证。实验结果表明,该方法是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号