首页> 外文期刊>Journal of information and computational science >Optimal Constrained Explicit Multi-degree Reduction Approximation of DP Curves
【24h】

Optimal Constrained Explicit Multi-degree Reduction Approximation of DP Curves

机译:DP曲线的最优约束显式多度约简

获取原文
获取原文并翻译 | 示例

摘要

DP curves, which possess the shape-preserving property and linear complexity evaluation algorithm, occupy a significantly important place in computer aided geometric design. Thus to do the research on the DP curves algorithms has a positive meaning. Aphirukmatakun et al. presented a degree elevation algorithm of DP curves based on the transformation between the DP basis and power basis. At the same time, Itsariyawanich et al. put forward a degree reduction algorithm. However, up to now, there has been no optimal algorithm for explicit multi-degree reduction of DP curves with endpoints constraints. In this paper, based on the orthogonality of Jacobi basis, we give out an effective algorithm of constrained multi-degree reduction approximation of DP curve. We prove that the approximation is optimal in the L_2 norm. In the end of this paper, we demonstrate the validity and efficiency of our algorithm.
机译:具有形状保持特性和线性复杂度评估算法的DP曲线在计算机辅助几何设计中占有重要的位置。因此对DP曲线算法的研究具有积极的意义。 Aphirukmatakun等。提出了一种基于DP基和功率基之间转换的DP曲线度高算法。同时,Itsariyawanich等。提出了度降低算法。但是,到目前为止,还没有最优的算法可以显着地减少带有端点约束的DP曲线。本文基于雅可比的正交性,给出了一种有效的DP曲线约束多度约简近似算法。我们证明在L_2范数中逼近是最优的。在本文的最后,我们证明了该算法的有效性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号