首页> 外文期刊>Journal of information and computational science >NSCT De-noising Algorithm with Image Partition and Non-local Means
【24h】

NSCT De-noising Algorithm with Image Partition and Non-local Means

机译:具有图像分割和非局部均值的NSCT去噪算法

获取原文
获取原文并翻译 | 示例

摘要

In order to preserve the integrity of edge and detail information of image, a NSCT de-noising algorithm with image partition and Non-local Means is proposed. Since NSCT has the features of translation invariance and multi-directional selectivity and non-local means method can make full use of the redundant information, a combination of the two methods is conducted to get a remarkable de-noising effect. Firstly the image is divided into several blocks with the same size, then the non-local means method is introduced to smooth the image and preserve the detail information of each block, furthermore, the noise variance and de-noising threshold of each block will be calculated and NSCT is applied to de-noise each block, finally, the blocks are merged. The experimental results demonstrate that the new image de-noising algorithm achieves excellence performance.
机译:为了保持图像边缘和细节信息的完整性,提出了一种具有图像分割和非局部均值的NSCT去噪算法。由于NSCT具有平移不变性和多方向选择性的特点,非局部均值方法可以充分利用冗余信息,因此将这两种方法结合使用可获得显着的去噪效果。首先将图像分成相同大小的几个块,然后引入非局部均值方法对图像进行平滑处理并保留每个块的细节信息,此外,每个块的噪声方差和去噪阈值将为计算并使用NSCT对每个块进行消噪,最后将这些块合并。实验结果表明,新的图像去噪算法具有优异的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号