首页> 外文期刊>Journal of information and computational science >Automatic Recognition of Woven Fabric by Using Gray Level Co-occurrence Matrix
【24h】

Automatic Recognition of Woven Fabric by Using Gray Level Co-occurrence Matrix

机译:灰度共生矩阵的机织物自动识别

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes an approach to texture analysis that can be used to extract the features of woven fabric images and recognize the woven fabric structure. 2-D wavelet transform is utilized to decompose the original image, in order to gain the 1/16 size of the low-frequency sub image. Then gray level co-occurrence matrix is employed to extract the feature parameters: energy, contrast, correlation and entropy. Lastly, learning vector quantization neural network is adopted to classify three basic weaves: plain weave, twill weave and stain weave. The experiment results demonstrate that gray level cooccurrence matrix can extract the features well, and learning vector quantization neural network can recognize three basic woven fabric structures automatically and accurately.
机译:本文提出了一种纹理分析方法,可用于提取机织图像的特征并识别机织结构。利用二维小波变换来分解原始图像,以获得低频子图像的1/16大小。然后采用灰度共生矩阵提取特征参数:能量,对比度,相关性和熵。最后,采用学习矢量量化神经网络对三种基本编织进行分类:平纹编织,斜纹编织和染色编织。实验结果表明,灰度共生矩阵能够很好地提取特征,学习矢量量化神经网络能够自动,准确地识别出三种基本的机织物结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号