首页> 外文期刊>Journal of information and computational science >Blind Recognition of Space-time Block Code Using Correlation Matrices in a High Dimensional Feature Space
【24h】

Blind Recognition of Space-time Block Code Using Correlation Matrices in a High Dimensional Feature Space

机译:高维特征空间中使用相关矩阵的空时分组码盲识别

获取原文
获取原文并翻译 | 示例

摘要

In modern wireless communication systems, one of the most promising techniques to improve the communication reliability and rate relies on the use of Multiple Input Multiple Output (MIMO) systems in association with Space-time Block Code (STBC). The recognition of communication parameters is a key step to decode the signals intercepted by receiver in a MIMO-STBC system. A new algorithm is developed to identify STBCs by adopting the Frobenius norms of space-time correlations matrices as features in a high dimensional space when the Channel State Information (CSI) is unavailable. In this high dimensional feature space, STBCs possess better divisibility than the methods in literature. A classifier based on Support Vector Machine (SVM) is trained to recognize STBCs. Simulations show that our classifier works well in the environments of short samples, limited number of receiver antennas and various modulations; the new method can recognize some STBCs which can not be distinguished by the algorithms in literatures; our method has better performance of correct recognition probability than these algorithms.
机译:在现代无线通信系统中,提高通信可靠性和速率的最有前途的技术之一取决于与空时分组码(STBC)结合使用多输入多输出(MIMO)系统。通信参数的识别是解码MIMO-STBC系统中接收器截获的信号的关键步骤。当信道状态信息(CSI)不可用时,通过采用时空相关矩阵的Frobenius规范作为高维空间中的特征,开发了一种新的算法来识别STBC。在这种高维特征空间中,STBC比文献中的方法具有更好的可除性。训练基于支持向量机(SVM)的分类器来识别STBC。仿真表明,我们的分类器在样本较短,接收天线数量有限以及各种调制的环境下效果很好。这种新方法可以识别一些STBC,而这是文献中的算法无法区分的。与这些算法相比,我们的方法具有更好的正确识别概率性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号