首页> 外文期刊>Journal of information and computational science >Doubly Selective Channel Estimation and Symbol Detection with Data-dependent Superimposed Training for OFDM Systems
【24h】

Doubly Selective Channel Estimation and Symbol Detection with Data-dependent Superimposed Training for OFDM Systems

机译:OFDM系统中依赖数据的叠加训练的双选信道估计和符号检测

获取原文
获取原文并翻译 | 示例

摘要

A channel estimation using Data-dependent Superimposed Training (DDST) over doubly selective channel is proposed for OFDM systems. Instead of using traditional pilot-assisted scheme, this scheme uses training superimposed to data sequence in time domain to assist the estimation, which consumes no extra bandwidth. The superimposed training is designed data-dependent to eliminate the interference of unknown data on estimation thoroughly. Meanwhile, an iterative symbol detection method is presented for the DDST based time varying channel. Simulations show that the proposed estimator can approach the real channel more accurately and achieve better Bit Error Ratio (BER) performance.
机译:针对OFDM系统,提出了在双选信道上使用依赖数据的叠加训练(DDST)进行信道估计的方法。代替使用传统的飞行员辅助方案,该方案使用时域上叠加到数据序列上的训练来辅助估计,而不会消耗额外的带宽。叠加训练的设计取决于数据,以彻底消除未知数据对估计的干扰。同时,针对基于DDST的时变信道,提出了一种迭代符号检测方法。仿真表明,提出的估计器可以更准确地逼近真实信道并获得更好的误码率(BER)性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号