首页> 外文OA文献 >Partial data-dependent superimposed training based iterative channel estimation for OFDM systems over doubly selective channels
【2h】

Partial data-dependent superimposed training based iterative channel estimation for OFDM systems over doubly selective channels

机译:基于部分数据的叠加训练基于双选择性信道的OFDm系统的迭代信道估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, partial data-dependent superimposed training based channel estimation for OFDM systems over doubly selective channels (DSCs) is addressed. Due to the presence of unknown data as interference, we first derive a minimum mean square error (MMSE) channel estimator by treating the effect of unknown data as noise. To further improve the performance, a novel iterative algorithm which jointly estimates channel and suppresses interference from data is proposed via variational inference approach. Simulation results show that the proposed algorithm converges after a few iterations. Furthermore, after convergence, the performance of the proposed channel estimator is very close to that with full training at high SNRs. ©2010 IEEE.
机译:本文针对双选择性信道(DSC)上OFDM系统的基于部分数据的基于叠加训练的信道估计进行了研究。由于存在未知数据作为干扰,因此我们首先将未知数据的影响视为噪声,从而得出最小均方误差(MMSE)信道估计器。为了进一步提高性能,提出了一种新的迭代算法,该算法可联合估计信道并抑制数据干扰。仿真结果表明,该算法经过几次迭代收敛。此外,在收敛之后,所提出的信道估计器的性能非常接近在高SNR下进行全面训练的性能。 ©2010 IEEE。

著录项

  • 作者

    Wu YC; He L; Ma S; Ng TS;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号