首页> 外文期刊>Journal of information and computational science >A Method for Gas Outburst Volume Detection Based on Multi-sensor Information Fusion in the Coal Mine
【24h】

A Method for Gas Outburst Volume Detection Based on Multi-sensor Information Fusion in the Coal Mine

机译:基于多传感器信息融合的煤矿瓦斯突出量检测方法

获取原文
获取原文并翻译 | 示例

摘要

The volume of the gas outburst directly affects the safety of the underground coal mining and economic benefits. Under many changing factors, the outburst volume is uncertain at the working face, thus causing the inconvenience of its detection. With the analysis of the defect of traditional BP network, this paper proposes a way of BP neural network optimization based on genetic algorithm of good global search ability. The optimized BP network has its application in integrating main information influencing the volume of gas outburst, and its volume is estimated. The result indicates that, compared with traditional BP network, the optimized BP network has faster convergence speed and higher estimation accuracy.
机译:瓦斯突出量直接影响地下煤矿开采的安全性和经济效益。在许多变化的因素下,工作面的突出量是不确定的,从而导致其检测的不便。在分析传统BP网络缺陷的基础上,提出了一种基于全局搜索能力好的遗传算法的BP神经网络优化方法。优化后的BP网络可用于整合影响瓦斯突出量的主要信息,并对其量进行估算。结果表明,与传统的BP网络相比,优化后的BP网络收敛速度更快,估计精度更高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号