首页> 外文期刊>Journal of information and computational science >Research and Application of Real Estate Document Image Classification Based on SVMs and KNN
【24h】

Research and Application of Real Estate Document Image Classification Based on SVMs and KNN

机译:基于SVM和KNN的房地产文献图像分类研究与应用。

获取原文
获取原文并翻译 | 示例

摘要

In order to quickly and accurately classify the massive real estate documents, a novel method of automatic classification for document image is presented. Based on the paragraph and local pixel feature, it is accomplished by SVM-KNN classifiers. This method, first, extracts the paragraph and local pixel features of the preprocessed document images, then constructs the SVM-KNN multiple classifiers according to these features, finally, the feature vector set is extracted from the massive real estate document images to compare the accuracy and efficiency of SVM and KNN classifiers. The experimental results show that this method can achieve fast and accurate classification of the document images and has good application value on the automatically classification of the real estate archives.
机译:为了快速,准确地对大量房地产文件进行分类,提出了一种新的文件图像自动分类方法。基于段落和局部像素特征,它是由SVM-KNN分类器完成的。该方法首先提取预处理后的文档图像的段落和局部像素特征,然后根据这些特征构造SVM-KNN多个分类器,最后从海量房地产文档图像中提取特征向量集,以比较准确性。和SVM和KNN分类器的效率。实验结果表明,该方法可以实现对文档图像的快速准确分类,在房地产档案自动分类中具有良好的应用价值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号