首页> 外文期刊>Journal of information and computational science >An Effective Iris Recognition System Based on Combined Feature Extraction and Enhanced Support Vector Machine Classifier
【24h】

An Effective Iris Recognition System Based on Combined Feature Extraction and Enhanced Support Vector Machine Classifier

机译:基于组合特征提取和增强支持向量机分类器的有效虹膜识别系统

获取原文
获取原文并翻译 | 示例

摘要

An effective iris recognition system is proposed in this study. Firstly, both Gray Level Co-occurrence Matrix (GLCM) and multi-channel 2D Gabor filters are adopted to extract iris features. GLCM is a statistic method. 2D Gabor niters reflect features of spatial and frequency transformation. The combined features are in the form of complementary and efficient effect. Secondly, Particle Swarm Optimization (PSO) is employed to deal with the parameter optimization for Support Vector Machine (SVM), and then the optimized SVM is applied to classify iris features. The experimental results demonstrate that our proposed iris recognition system outperforms some of the existing methods. And the SVM optimized by PSO achieves higher recognition accuracy and lower standard deviation than that of the SVM using grid search method. The recognition rate of 99.409% obtained on JLUBRIRIS-V1 iris image database indicates the proposed iris recognition system has great potential for practical use.
机译:在这项研究中提出了一种有效的虹膜识别系统。首先,采用灰度共生矩阵(GLCM)和多通道二维Gabor滤波器提取虹膜特征。 GLCM是一种统计方法。二维Gabor反射镜反映了空间和频率变换的特征。结合的特征是互补和有效的形式。其次,采用粒子群算法(PSO)对支持向量机(SVM)进行参数优化,然后将优化后的SVM应用于虹膜特征分类。实验结果表明,我们提出的虹膜识别系统优于某些现有方法。与使用网格搜索方法的SVM相比,通过PSO优化的SVM具有更高的识别精度和更低的标准偏差。在JLUBRIRIS-V1虹膜图像数据库上获得的99.409%的识别率表明,所提出的虹膜识别系统具有很大的实际应用潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号