首页> 外文期刊>Journal of information and computational science >Sparsity-Tolerated Algorithm with Missing Value Recovering in User-based Collaborative Filtering Recommendation
【24h】

Sparsity-Tolerated Algorithm with Missing Value Recovering in User-based Collaborative Filtering Recommendation

机译:基于用户的协同过滤推荐中具有稀疏值恢复的稀疏容忍算法

获取原文
获取原文并翻译 | 示例

摘要

Personalized recommendation plays an important role in both e-commerce area and information filtering area. The neighborhood based collaborative filtering algorithm has already been used successfully. However, with the overwhelming explosion of Internet content, the problem of data sparsity has become more and more severe. The effect of data sparsity problem lies in both similarity computation and prediction generation, but very few works focus on the latter. This paper presents a hierarchy k-nearest neighbor collaborative filtering algorithm. It fills in the missing value by constructing multiple layers of nearest neighbors for users to generate better prediction. Experiments validated that the algorithm proposed in this paper achieved higher prediction accuracy with extreme sparse data.
机译:个性化推荐在电子商务领域和信息过滤领域都扮演着重要角色。基于邻域的协同过滤算法已经被成功使用。但是,随着Internet内容的爆炸性增长,数据稀疏性问题变得越来越严重。数据稀疏性问题的影响在于相似性计算和预测生成,但是很少有工作专注于后者。本文提出了一种层次k近邻协同过滤算法。它通过构造多层最近的邻居来填充缺失值,以使用户产生更好的预测。实验证明,本文提出的算法在极稀疏数据的情况下具有较高的预测精度。

著录项

  • 来源
    《Journal of information and computational science》 |2013年第15期|4939-4948|共10页
  • 作者单位

    Science and Technology on Information Systems Engineering Laboratory, National University ofDefense Technology, Changsha 410073, China;

    Science and Technology on Information Systems Engineering Laboratory, National University ofDefense Technology, Changsha 410073, China;

    Science and Technology on Information Systems Engineering Laboratory, National University ofDefense Technology, Changsha 410073, China;

    Science and Technology on Information Systems Engineering Laboratory, National University ofDefense Technology, Changsha 410073, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Collaborative Filtering; Recommendation; Sparsity Problem; Hierarchy K-Nearest Neighbor;

    机译:协同过滤建议;稀疏问题;层次结构K最近邻居;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号