首页> 外文期刊>Expert systems with applications >Differentially private user-based collaborative filtering recommendation based on k-means clustering
【24h】

Differentially private user-based collaborative filtering recommendation based on k-means clustering

机译:基于K-means群集的差异基于私有的用户的协作过滤推荐

获取原文
获取原文并翻译 | 示例

摘要

Collaborative filtering (CF) recommendation is well-known for its outstanding recommendation performance, but previous researches showed that it could cause privacy leakage for users due to kappa-nearest neighboring (KNN) attacks. Recently, the notion of differential privacy (DP) has been applied to privacy preservation in recommendation systems. However, as far as we know, existing differentially private CF recommendation systems degrade the recommendation performance (such as recall and precision) to an unacceptable level. In this paper, to address the performance degradation problem, we propose a differentially private user-based CF recommendation system based on kappa-means clustering (KDPCF). Specifically, to improve the recommendation performance, KDPCF first clusters the dataset into categories by kappa-means clustering and appropriately adjusts the size of the target category to which the target user belongs, so that only users in the well-sized target category are used for recommendation. Then, it selects efficiently a set of neighbors from the target category at one time by employing only one instance of exponential mechanism instead of the composition of multiple ones, and then uses a CF algorithm to recommend based on this set of neighbors. We theoretically prove that our system achieves differential privacy. Empirically, we use two public datasets to evaluate our recommendation system. The experimental results demonstrate that our system has a significant performance improvement compared to existing ones.
机译:协作过滤(CF)推荐以其出色的推荐绩效而闻名,但之前的研究表明,由于KAPPA最近的邻近(KNN)攻击,用户可能导致隐私泄漏。最近,差异隐私(DP)的概念已应用于推荐系统中的隐私保存。然而,据我们所知,现有的差异私有化CF推荐系统将推荐性能(例如召回和精确)降低到不可接受的水平。在本文中,为了解决性能劣化问题,我们提出了一种基于差异的基于用户的CF推荐系统,基于Kappa-Mearing群集(KDPCF)。具体而言,为了提高推荐性能,KDPCF首先将DataSet与Kappa-Means群集分类群集,并适当地调整目标用户所属的目标类别的大小,从而仅使用良好的目标类别中的用户推荐。然后,通过仅使用一个指数机制实例而不是多个元件的一个实例,从目标类别中有效地从目标类别中选择一组邻居,然后使用CF算法基于该组邻居推荐。我们理论证明我们的系统实现了差异隐私。经验上,我们使用两个公共数据集来评估我们的推荐系统。实验结果表明,与现有系统相比,我们的系统具有显着的性能改善。

著录项

  • 来源
    《Expert systems with applications》 |2021年第4期|114366.1-114366.9|共9页
  • 作者单位

    Anhui Univ Sch Comp Sci & Technol Key Lab Intelligent Comp & Signal Proc Minist Educ Hefei 230601 Peoples R China;

    Anhui Univ Sch Comp Sci & Technol Key Lab Intelligent Comp & Signal Proc Minist Educ Hefei 230601 Peoples R China;

    Anhui Univ Sch Comp Sci & Technol Key Lab Intelligent Comp & Signal Proc Minist Educ Hefei 230601 Peoples R China;

    Anhui Univ Sch Comp Sci & Technol Key Lab Intelligent Comp & Signal Proc Minist Educ Hefei 230601 Peoples R China;

    Sun Yat Sen Univ Sch Data & Comp Sci Guangzhou 510006 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Differential privacy; k-means clustering; Recommendation system; Collaborative filtering;

    机译:差异隐私;K-means聚类;推荐系统;协作过滤;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号