首页> 外文期刊>Journal of information and computational science >Estimating the Number of Components in Gaussian Mixture Models Adaptively
【24h】

Estimating the Number of Components in Gaussian Mixture Models Adaptively

机译:自适应估计高斯混合模型中的成分数

获取原文
获取原文并翻译 | 示例

摘要

An important but difficult problem of mixture model is estimating the number of components, k, by model selection criterion. We investigate the sum of weighted real and imaginary parts of all Log-Characteristic Functions (LCF) for Gaussian Mixture Model (GMM) and propose a new method to estimate k, adaptively. Our method defines the Sum of Weighted Real parts of all LCFs (SWRLCF) as a new convergent function and propose a new model selection criterion based on it. Our new model criterion makes use of the stability of the SWRLCF when k is larger than the true number of components. The univariate acidity and simulated 2D datasets are used to test. Experiment results suggest that our method without any priori is more suited for large sample applications than Akaike's Information Criterion (AIC), AIC3, Bayesian Information Criterion (BIC) and the Stepwise Split and-merge EM (SSMEM) methods.
机译:混合模型的一个重要但困难的问题是通过模型选择标准估计组分数k。我们研究了高斯混合模型(GMM)的所有对数特征函数(LCF)的加权实部和虚部的总和,并提出了一种自适应地估计k的新方法。我们的方法将所有LCF的加权实数部分之和(SWRLCF)定义为新的收敛函数,并在此基础上提出新的模型选择准则。当k大于组件的真实数量时,我们的新模型标准将利用SWRLCF的稳定性。使用单变量酸度和模拟的2D数据集进行测试。实验结果表明,与Akaike的信息标准(AIC),AIC3,贝叶斯信息标准(BIC)和逐步拆分并合并EM(SSMEM)方法相比,我们的方法没有任何先验优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号