首页> 外文期刊>Journal of information and computational science >A New Construction Method of Neighbor Graph Based on Correlative Columns Information for Marginal Fisher Analysis
【24h】

A New Construction Method of Neighbor Graph Based on Correlative Columns Information for Marginal Fisher Analysis

机译:基于相关列信息的边际Fisher分析的邻域图构造新方法

获取原文
获取原文并翻译 | 示例

摘要

Marginal fisher analysis is a typical supervised method which has been used in many practical problems such as face recognition. However, MFA mainly depends on its essential neighbor graphs- intrinsic graph and penalty graph. Intrinsic graph characterizes the intra-class compactness while the inter-class graph characterizes the inter-class separability. Consequently, neighbor graph construction plays a vital role on the performance of MFA. In this paper, we propose a new construction method of intrinsic graph and penalty graph for marginal fisher analysis. It is based on correlative columns information, so we name this new method as Correlative Columns Information based MFA (CCIMFA). CCIMFA can well show the spatial structure information of the original image matrices, and also can preserve the corresponding columns information. CCIMFA also has anther attractive property that is columns' noise immunity. In order to test and evaluate CCIMFA's performance, a series of experiments were performed on the well-known face databases: ORL and Yale face databases. The experimental results show that CCIMFA achieves better performance than MFA.
机译:边际费舍尔分析是一种典型的监督方法,已用于许多实际问题中,例如人脸识别。但是,MFA主要取决于其基本邻居图-内在图和惩罚图。内在图表示类内部的紧致性,而内类图表示类间的可分离性。因此,邻居图构造对MFA的性能起着至关重要的作用。本文提出了一种用于边际费舍尔分析的内在图和罚图的新构造方法。它基于相关列信息,因此我们将此新方法命名为基于相关列信息的MFA(CCIMFA)。 CCIMFA可以很好地显示原始图像矩阵的空间结构信息,还可以保留相应的列信息。 CCIMFA还具有另一种吸引人的特性,即色谱柱的抗扰性。为了测试和评估CCIMFA的性能,对著名的面部数据库ORL和Yale面部数据库进行了一系列实验。实验结果表明,CCIMFA比MFA具有更好的性能。

著录项

  • 来源
    《Journal of information and computational science》 |2013年第11期|3345-3352|共8页
  • 作者单位

    College of Computer Science and Technology, Jilin University, Changchun 130012, China;

    College of Computer Science and Technology, Jilin University, Changchun 130012, China;

    College of Computer Science and Technology, Jilin University, Changchun 130012, China;

    College of Computer Science and Technology, Jilin University, Changchun 130012, China;

    College of Computer Science and Technology, Jilin University, Changchun 130012, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Neighbor Graph; Marginal Fisher Analysis;

    机译:邻居图边际费舍尔分析;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号