首页> 外文期刊>Journal of information and computational science >Nonlinear Fitting Characteristics Analysis on Prediction Model of Adaptive Variable Weight Fuzzy RBF Neural Network
【24h】

Nonlinear Fitting Characteristics Analysis on Prediction Model of Adaptive Variable Weight Fuzzy RBF Neural Network

机译:自适应变权模糊RBF神经网络预测模型的非线性拟合特征分析

获取原文
获取原文并翻译 | 示例

摘要

For the number and width of the implicit layer RBF centers have a direct impact on the approximation capability of RBF neural network, clustering method is adopted to determine the radial basis function parameters, adaptive variable weight method is used to improve the conventional fuzzy RBF neural network learning algorithm, adaptive variable weight fuzzy RBF neural network prediction model is built, and simulation experiments are performed on its non-linear function approximation performance. Results show that the adaptive variable weight fuzzy RBF neural network prediction model has high accuracy in both single-input single-output nonlinear prediction and multiple-input multiple-output nonlinear prediction. Instability analysis results of surrounding rock in a massive metal mine gob area in southern China verify the effectiveness and practicality of the nonlinear fitting of the model.
机译:由于隐含层RBF中心的数量和宽度直接影响RBF神经网络的逼近能力,采用聚类方法确定径向基函数参数,采用自适应变权方法对常规模糊RBF神经网络进行改进。学习算法,建立自适应变权模糊RBF神经网络预测模型,并对其非线性函数逼近性能进行仿真实验。结果表明,自适应变权模糊RBF神经网络预测模型在单输入单输出非线性预测和多输入多输出非线性预测中均具有较高的精度。中国南方某大型金属矿山采空区围岩失稳分析结果验证了该模型非线性拟合的有效性和实用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号