首页> 外文期刊>Journal of information and computational science >A Novel SAR Image Recognition Algorithm with Rejection Mode via Biomimetic Pattern Recognition
【24h】

A Novel SAR Image Recognition Algorithm with Rejection Mode via Biomimetic Pattern Recognition

机译:仿生模式识别的具有排斥模式的SAR图像识别新算法

获取原文
获取原文并翻译 | 示例

摘要

Due to increasing demand of the modern battlefield awareness and military reconnaissance, Synthetic Aperture Radar (SAR) Automatic Target Recognition (ATR) has been receiving more and more attention. In this paper, a SAR ATR algorithm with rejection mode based on Local Phase Quantization (LPQ) plus Biomimetic Pattern Recognition (BPR) has been proposed. There are three main steps in the proposed algorithm: firstly, a simple preprocessing procedure based on centroid location is applied to the original SAR image to extract the target's Region of Interest (ROI). Secondly, Short-term Fourier Transform (STFT) computed over sub-windows at every pixel of the ROI image is performed and the extracted information of the Fourier phase spectrum is quantized as features to overcome the target's azimuth angle variations. Finally, high dimensional geometry space covering method based on BPR theory is adopted and hyper-sausage neuron is employed to construct geometry coverage for the purpose of recognizing or rejecting the incoming targets. Experiments on the public standard MSTAR database show that this proposed algorithm can achieve relatively high recognition rate while obtaining high rejection rate for unknown incoming targets.
机译:由于对现代战场感知和军事侦察的需求不断增长,合成孔径雷达(SAR)自动目标识别(ATR)受到了越来越多的关注。提出了一种基于局部相位量化(LPQ)和仿生模式识别(BPR)的SAR ATR拒绝模式算法。所提出的算法包括三个主要步骤:首先,将基于质心位置的简单预处理程序应用于原始SAR图像,以提取目标的感兴趣区域(ROI)。其次,执行在ROI图像的每个像素处的子窗口上计算的短期傅立叶变换(STFT),并将所提取的傅立叶相谱信息量化为特征,以克服目标的方位角变化。最后,采用基于BPR理论的高维几何空间覆盖方法,并采用超香肠神经元构造几何覆盖,以识别或拒绝进入的目标。在公共标准MSTAR数据库上进行的实验表明,该算法在获得未知传入目标的高拒绝率的同时,可以实现相对较高的识别率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号