首页> 外文期刊>Journal of information and computational science >A Random Forest Approach to Model-based Recommendation
【24h】

A Random Forest Approach to Model-based Recommendation

机译:基于模型的推荐的随机森林方法

获取原文
获取原文并翻译 | 示例

摘要

Model-based recommender systems are popular since models with demographic/item information can highlight the correlation of data and provide an intuitive recommendation. Some algorithms, such as Bayesian classifiers, decision trees, have been used to generate respective models. In this paper, we propose a random forest approach to create model-based recommendations. First, two types of datasets are extracted from the original one for the purposes of demographic-based and content-based recommendation, respectively. Second, average ratings are added into the new datasets as an attribute. Third, a forest is built for each user/item, where each leaf is assigned as a discrete score. Fourth, 6 predicting approaches adopting standard voting, weighted average, etc., are applied to compute evaluation values from the forest. Experimental results on the well-known MovieLens dataset show that some approaches are more reliable than others in terms of mean absolute error.
机译:基于模型的推荐系统很受欢迎,因为具有人口统计/项目信息的模型可以突出显示数据的相关性并提供直观的推荐。一些算法(例如贝叶斯分类器,决策树)已用于生成各自的模型。在本文中,我们提出了一种随机森林方法来创建基于模型的建议。首先,分别从基于人口统计和基于内容的推荐的目的中,从原始数据集中提取两种类型的数据集。其次,将平均评分作为属性添加到新数据集中。第三,为每个用户/项目建立一个森林,其中每个叶子都被分配为一个离散分数。第四,将采用标准投票,加权平均等方法的6种预测方法用于从森林中计算评估值。在著名的MovieLens数据集上的实验结果表明,就平均绝对误差而言,某些方法比其他方法更可靠。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号