首页> 外文期刊>Journal of information and computational science >Haar-SVM for Real-time Banknotes Recognition
【24h】

Haar-SVM for Real-time Banknotes Recognition

机译:Haar-SVM用于实时钞票识别

获取原文
获取原文并翻译 | 示例

摘要

Haar wavelet is the simplest possible wavelet, and Support Vector Machine (SVM) is an effective classifier. This paper proposes a new method that combines the Haar wavelet and SVM for the first time to solve the problem of small denomination banknotes recognition with small computations, real timing and excellent performance. The key idea of this method is to extract the waveform features and transform them to the digitalize support vectors with fixed length. We illustrate our method on a dataset that comprises 220,000 samples of 2,200 different banknotes, and the approach achieves an average recognition rate of 99.9877%. The experimental results show our method is also simple, fast and robust. Our method has been applied in JBYD-8801A RMB-banknote counter.
机译:Haar小波是最简单的小波,支持向量机(SVM)是有效的分类器。本文首次提出了一种结合Haar小波和SVM的新方法,以解决计算量少,实时性强,性能优良的小面额纸币识别问题。该方法的关键思想是提取波形特征并将其转换为固定长度的数字化支持向量。我们在包含220,000张2200张钞票的220,000个样本的数据集上说明了我们的方法,该方法的平均识别率为99.9877%。实验结果表明,该方法简便,快速,可靠。我们的方法已应用于JBYD-8801A人民币点钞机。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号