首页> 外文期刊>Journal of information and computational science >Aero-engine Gas Path Fault Diagnosis Based on Improved Support Vector Machine and Synergetic Neural Network
【24h】

Aero-engine Gas Path Fault Diagnosis Based on Improved Support Vector Machine and Synergetic Neural Network

机译:基于改进支持向量机和协同神经网络的航空发动机气路故障诊断

获取原文
获取原文并翻译 | 示例

摘要

In order to distinguish similar failures of the aero-engine gas path fault diagnosis and improve the diagnostic accuracy, a fault diagnosing method based on improved SVM and Synergetic Neural Network was put forward. Firstly, the SVM after being optimized by Genetic Algorithms was used to diagnose and classify faults preliminarily for measured data, and the diagnosis results were analyzed to acquire indistinguishable similar failures, then the Synergetic Neural Network was introduced to distinguish similar failures and further determine the corresponding fault type, finally analyzed this fault model based on actual data. The experimental results show that the aero-engine gas path fault diagnosis method based on improved SVM and Synergetic Neural Network has high diagnostic accuracy and noise immunity.
机译:为了区分航空发动机气路故障的相似故障,提高诊断的准确性,提出了一种基于改进的支持向量机和协同神经网络的故障诊断方法。首先,利用遗传算法对支持向量机进行优化后,对测量数据进行初步的故障诊断和分类,对诊断结果进行分析,以得到难以区分的相似故障,然后引入协同神经网络对相似故障进行区分,并进一步确定相应的故障。故障类型,最后根据实际数据分析该故障模型。实验结果表明,基于改进的支持向量机和协同神经网络的航空发动机气路故障诊断方法具有较高的诊断精度和抗噪声能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号