首页> 外文期刊>Journal of information and computational science >Parameter Estimation for Chaotic Systems Based on Chaotic-search Artificial Bee Colony Algorithm
【24h】

Parameter Estimation for Chaotic Systems Based on Chaotic-search Artificial Bee Colony Algorithm

机译:基于混沌搜索人工蜂群算法的混沌系统参数估计

获取原文
获取原文并翻译 | 示例

摘要

Parameter estimation for chaotic systems is the key to chaotic systems' control and synchronization. In essence, it is a multi-parameter optimization problem. In order to accurately estimate the unknown parameters for chaotic systems, the Chaotic-search Artificial Bee Colony Algorithm (CSABC) is proposed to solve the optimization problem in this paper. By introducing chaotic sequences to reinitialize the individuals which have fallen into local optimum, this algorithm gets the neighborhood points of the local optimum through iteration and helps the constrained individuals quickly escape from the local optimum and find the global optimal solution, which implies a remarkable improvement in global searching ability and convergence velocity. Typical Lorenz Chaotic System is utilized for numerical simulation, the result shows that the CSABC algorithm can effectively estimate the unknown parameters.
机译:混沌系统的参数估计是混沌系统控制和同步的关键。从本质上讲,这是一个多参数优化问题。为了准确估计混沌系统的未知参数,提出了一种混沌搜索人工蜂群算法(CSABC)来解决该优化问题。通过引入混沌序列来重新初始化陷入局部最优的个体,该算法通过迭代获得局部最优的邻域点,并帮助受约束的个体快速逃离局部最优并找到全局最优解,这意味着明显的改进全局搜索能力和收敛速度。利用典型的洛伦兹混沌系统进行了数值模拟,结果表明CSABC算法可以有效地估计未知参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号