首页> 外文期刊>Journal of information and computational science >Pedestrian Detection Based on Multi-scale HOG Features and Integral Images
【24h】

Pedestrian Detection Based on Multi-scale HOG Features and Integral Images

机译:基于多尺度HOG特征和积分图像的行人检测

获取原文
获取原文并翻译 | 示例

摘要

In the light of slow-speed computation and poor performance in multi-scale detection of traditional HOG feature extraction algorithm, we put forward an improved pedestrian detection algorithm based on multi-scale HOG feature and integral image. On the basis of traditional HOG algorithm, firstly we introduce integral image and multi-scale HOG feature to reduce the feature dimension and avoid some repetitive computation. Next, we use INRIA data-set to train the SVM classifier and test it based on two different algorithms. It is concluded that the improved algorithm we have put forward enable the detection efficiency improvement with better recall, computation speed and robustness.
机译:针对传统HOG特征提取算法在多尺度检测中运算速度较慢和性能较差的问题,提出了一种基于多尺度HOG特征和积分图像的行人检测算法。首先在传统HOG算法的基础上,引入积分图像和多尺度HOG特征,以减少特征尺寸,避免重复计算。接下来,我们使用INRIA数据集来训练SVM分类器,并基于两种不同的算法对其进行测试。结论是,我们提出的改进算法可以提高检测效率,并具有更好的查全率,计算速度和鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号