首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >Enhanced Cascading Classifier Using Multi-Scale HOG for Pedestrian Detection from Aerial Images
【24h】

Enhanced Cascading Classifier Using Multi-Scale HOG for Pedestrian Detection from Aerial Images

机译:使用多尺度HOG的增强级联分类器用于航空图像中的行人检测

获取原文
获取原文并翻译 | 示例

摘要

We propose a method for pedestrian detection from aerial images captured by unmanned aerial vehicles (UAVs). Aerial images are captured at considerably low resolution, and they are often subject to heavy noise and blur as a result of atmospheric influences. Furthermore, significant changes to the appearance of pedestrians frequently occur because of UAV motion. In order to address these crucial problems, we propose a cascading classifier that concatenates a pre-trained classifier and an online learning-based classifier. We construct the first classifier using deep belief network (DBN) with an extended input layer. Unlike previous approaches that use raw images as the input layer of the DBN, we exploit multi-scale histogram of oriented gradients (MSHOG) features. The MS-HOG enables us to supply better and richer information than low-resolution aerial images for constructing a reliable deep structure of DBN, because the dimensions of the input features can be expanded. Furthermore, the MS-HOG effectively extracts the necessary edge information while reducing trivial gradients and noise. The second classifier is based on online learning, and it uses predictions of the target appearance using UAV motions. Predicting the target appearance enables us to collect reliable training samples for the classifier's online learning process. Experiments using aerial videos demonstrate the effectiveness of the proposed method.
机译:我们提出了一种从无人驾驶飞机(UAV)捕获的空中图像中进行行人检测的方法。航空影像以相当低的分辨率捕获,并且由于大气的影响,它们经常会受到重噪声和模糊的影响。此外,由于无人机运动,经常发生行人外观的重大变化。为了解决这些关键问题,我们提出了一个级联分类器,它将一个预先训练的分类器和一个基于在线学习的分类器连接起来。我们使用具有扩展输入层的深度置信网络(DBN)构造第一个分类器。与以前使用原始图像作为DBN输入层的方法不同,我们利用定向梯度(MSHOG)功能的多尺度直方图。 MS-HOG使我们能够提供比低分辨率航空影像更好,更丰富的信息,以构建可靠的DBN深层结构,因为可以扩展输入要素的尺寸。此外,MS-HOG有效地提取了必要的边缘信息,同时减少了微小的梯度和噪声。第二个分类器基于在线学习,它使用无人机运动对目标外观进行预测。预测目标外观使我们能够为分类器的在线学习过程收集可靠的训练样本。使用航拍视频的实验证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号