首页> 外文期刊>Journal of information and computational science >Research of Spatial Data Query Optimization Methods Based on K-Nearest Neighbor Algorithm
【24h】

Research of Spatial Data Query Optimization Methods Based on K-Nearest Neighbor Algorithm

机译:基于K最近邻算法的空间数据查询优化方法研究

获取原文
获取原文并翻译 | 示例

摘要

According to the problems of multi dimension, mass and complexity of spatial data and the low efficiency of traditional spatial data query optimization algorithm, this paper proposes the improved K-Nearest Neighbor (KNN) query optimization algorithm based on KD-tree spatial index technology. The algorithm accelerates the search of finding the k nearest neighbors in KNN algorithm by constructing a quickly create KD-tree indexes. By comparing the experimental results of different data sets and different k values with the traditional FOR circle query, the feasibility and efficiency of the improved KNN query optimization algorithm are verified.
机译:针对空间数据的多维,繁琐和复杂性以及传统空间数据查询优化算法效率低下的问题,提出了一种改进的基于KD树空间索引技术的K最近邻查询优化算法。通过构造快速创建的KD树索引,该算法加快了在KNN算法中查找k个最近邻居的搜索速度。通过将不同数据集和不同k值的实验结果与传统的FOR圆查询进行比较,验证了改进的KNN查询优化算法的可行性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号