首页> 外文期刊>Journal of information and computational science >An Improved Particle Swarm Optimization Algorithm for Parameters Identification of Power Load Model Based on Simulated Annealing
【24h】

An Improved Particle Swarm Optimization Algorithm for Parameters Identification of Power Load Model Based on Simulated Annealing

机译:一种基于模拟退火的粒子群优化算法在电力负荷模型参数辨识中的应用

获取原文
获取原文并翻译 | 示例

摘要

To improve the parameters identification precision of power system load model, an improved Particle Swarm Optimization algorithm based on simulated annealing (SA-WPSO) is proposed. Firstly, the algorithm adaptively adjusts the inertia weight to improve the search speed of the whole process according to the particles in different search periods. Secondly, we combine the simulated annealing (SA) algorithm and Particle Swarm Optimization (PSO) algorithm to make the algorithm converge to the global optimal value. Finally, the improved algorithm was applied to parameters identification of power load model. Simulation experiments show that the algorithm has effectively improved the parameters identification precision and can converge to the global optimal value rapidly in the parameters identification of static load model.
机译:为了提高电力系统负荷模型的参数辨识精度,提出了一种改进的基于模拟退火的粒子群优化算法(SA-WPSO)。首先,该算法根据不同搜索周期内的粒子自适应地调整惯性权重,以提高整个过程的搜索速度。其次,将模拟退火算法和粒子群优化算法相结合,使算法收敛到全局最优值。最后,将改进算法应用于电力负荷模型的参数辨识。仿真实验表明,该算法有效提高了参数辨识精度,可以在静态载荷模型的参数辨识中快速收敛到全局最优值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号