首页> 外文期刊>Journal of information and computational science >The Load Balance Strategy of MapReduce Jobs Based on the Fair Load Online Algorithm
【24h】

The Load Balance Strategy of MapReduce Jobs Based on the Fair Load Online Algorithm

机译:基于公平负载在线算法的MapReduce作业负载均衡策略

获取原文
获取原文并翻译 | 示例

摘要

Using MapReduce technology for parallel processing of data can improve the utilization of hardware devices and enhance the efficiency of data processing. However, MapReduce Technology is blind to the number of tasks in the frame, which will cause load imbalance of the node. Using the fair load online model to measure the performance of tasks slots can address the issue that the running speed of task nodes is not uniform due to the different CPU and hard disk speed of each node, as well as unknown input data and unsynchronized data between the MapReduce stages. It can distribute data according to the performance of the node so that each node load is more balanced, and it can be applied into the actual large-scale cluster. In this paper, the improved algorithm is placed in the load balancing and data evenly distributed jobs to verify its performance. Results show that the improved algorithm effectively improves the balance of the node load.
机译:使用MapReduce技术并行处理数据可以提高硬件设备的利用率,并提高数据处理效率。但是,MapReduce技术对框架中的任务数量视而不见,这将导致节点的负载不平衡。使用公平负载在线模型来衡量任务插槽的性能可以解决以下问题:由于每个节点的CPU和硬盘速度不同,以及之间的未知输入数据和未同步数据,任务节点的运行速度不一致MapReduce阶段。它可以根据节点的性能分配数据,从而使每个节点的负载更加均衡,并且可以应用于实际的大型集群。本文将改进的算法放在负载均衡和数据均匀分布的作业中,以验证其性能。结果表明,改进后的算法有效地提高了节点负载的平衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号