首页> 外文期刊>Journal of information and computational science >A Small-population Based Binary PSO Approach for Unit Commitment Problem
【24h】

A Small-population Based Binary PSO Approach for Unit Commitment Problem

机译:基于小种群的二元PSO方法求解机组组合问题

获取原文
获取原文并翻译 | 示例

摘要

Unit commitment plays one of the most important roles in the operation planning of power systems. This paper proposes a Small-population based binary PSO (SBPSO) approach for Unit Commitment Problem (UCP). The proposed approach employs three operations, i.e., mutation, DE-acceleration and migration to achieve the more-near optimal solution faster. Moreover, a repair strategy that consists of repair to minimum online/offline time, spinning reserve and de-commitment of excessive units is proposed to obtain more feasible particles. The method is implemented and test using C++ programming. The test is carried out using a well-known 10 units system to verify the feasibility and effectiveness of the proposed method as well as the performance of the algorithm. The comparison results with other evolutionary methods clearly show the competitiveness of the proposed SBPSO approach.
机译:机组承诺在电力系统的运行计划中扮演着最重要的角色之一。本文提出了一种基于小种群的二进制PSO(SBPSO)方法来解决单位承诺问题(UCP)。所提出的方法采用了三种操作,即突变,DE加速和迁移,以更快地实现更近的最优解决方案。此外,提出了一种修理策略,其中包括修理最短的在线/离线时间,旋转储备和取消过量单元的使用,以获取更多可行的粒子。该方法是使用C ++编程实现和测试的。使用众所周知的10单位系统进行测试,以验证所提出方法的可行性和有效性以及算法的性能。与其他进化方法的比较结果清楚地表明了所提出的SBPSO方法的竞争力。

著录项

  • 来源
    《Journal of information and computational science》 |2015年第9期|3599-3610|共12页
  • 作者单位

    Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China,Creditease Credit Management Services (Beijing) Co., LTD, Beijing 100000, China;

    Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen 361005, China;

    Beijing Electric Power and Economic Research Institute, Beijing 100055, China;

    Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen 361005, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Binary PSO; Unit Commitment Problem; Small Population;

    机译:二进制PSO;单位承诺问题;人口少;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号