首页> 外文期刊>Journal of information and computational science >An Improved Fruit Fly Optimization Algorithm and Its Application of PID Parameters Tuning
【24h】

An Improved Fruit Fly Optimization Algorithm and Its Application of PID Parameters Tuning

机译:改进的果蝇优化算法及其PID参数整定的应用

获取原文
获取原文并翻译 | 示例

摘要

In the application process, the Fruit Fly Optimization Algorithm (FOA) is depending on a simple group behavior, and it ignores the individual behavior, which has aggravated the complexity of the optimization process. Thus, we put forward the Improved Fruit Fly Optimization Algorithm (IFOA) by adding the inertia weight which changes of the nonlinear decreasing and the behavior of the relationship between individual and group. The Shuffled Frog Leaping Algorithm is introduced in the paper and it has been together with IFOA. The purpose is avoiding local optimum and enhancing the ability of searching for the global optimum. IFOA is applicable to the tuning of PID controller. Finally, it concludes that our algorithm can balance the local and global optimization ability to the performance of the PID controller to achieve the better outcome by comparing with FOA.
机译:在申请过程中,果蝇优化算法(FOA)依赖于简单的群体行为,而忽略了个体行为,这加剧了优化过程的复杂性。因此,我们提出了一种改进的果蝇优化算法(IFOA),增加了惯性权重,该惯性权重是非线性递减的变化以及个体与群体之间关系的行为。本文介绍了随机蛙跳算法,该算法已与IFOA一起使用。目的是避免局部最优,并增强寻找全局最优的能力。 IFOA适用于PID控制器的整定。最后,得出的结论是,与FOA相比,我们的算法可以在局部和全局优化能力与PID控制器的性能之间取得平衡,从而获得更好的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号