首页> 外文期刊>Journal of information and computational science >PEnSVM: An Improved SVM Ensemble Algorithm Based on Different PCA Thresholds
【24h】

PEnSVM: An Improved SVM Ensemble Algorithm Based on Different PCA Thresholds

机译:PEnSVM:基于不同PCA阈值的改进的SVM集成算法

获取原文
获取原文并翻译 | 示例

摘要

In this study, a Support Vector Machine (SVM) ensemble algorithm, named PEnSVM, is presented aiming to improve the classification accuracy of SVM. PEnSVM includes ten base SVM classifiers which are based on different Principal Component Analysis thresholds. Majority volting strategy is adopted to construct the SVM ensemble of the ten base classifiers. Four UCI data sets and a data set from the Uppsala University are used to measure the performance of PEnSVM. When compared with the famous LIBSVM and ensembleSVM, an up-to-date SVM ensemble algorithm, the experimental results show that PEnSVM outperforms those two algorithms in terms of accuracy and sensitivity by and large.
机译:为了提高支持向量机的分类精度,提出了一种名为PEnSVM的支持向量机集成算法。 PEnSVM包括十个基于不同主成分分析阈值的基本SVM分类器。采用多数投票策略构造了10个基本分类器的SVM集成。四个UCI数据集和一个来自乌普萨拉大学的数据集用于衡量PEnSVM的性能。与著名的LIBSVM和ensembleSVM(一种最新的SVM集成算法)进行比较时,实验结果表明,PEnSVM在准确性和灵敏度方面都大大优于这两种算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号