首页> 外文期刊>Journal of information and computational science >The Method for Time Series Based on Symbolic Form and Area Difference
【24h】

The Method for Time Series Based on Symbolic Form and Area Difference

机译:基于符号形式和面积差的时间序列方法

获取原文
获取原文并翻译 | 示例

摘要

Symbolic Aggregate Approximation (SAX) is a popular algorithm in the symbolic methods, but it doesn't take the form characteristic of sequence into consideration and its description of time series information is incomplete. In this paper, a method for time series based on symbolic form and area difference is introduced. This method applies the idea of layered in unvaried-time series similarity measure to combine the symbolic method with the area of sequence and coordinate axis, and the similarity can be searched from the rough to the subtle. Ultimately, not only can the overall trend of sequence be matched, but also the goal of fitting can be reached in detail. The experiments show that this method can be used effectively for time series similarity matching.
机译:符号聚合近似(SAX)是符号方法中的一种流行算法,但它没有考虑序列的形式特征,并且其对时间序列信息的描述不完整。本文介绍了一种基于符号形式和面积差的时间序列方法。该方法采用分层的不变时序列相似性度量的思想,将符号方法与序列和坐标轴区域相结合,可以从粗糙到细微地搜索相似性。最终,不仅可以匹配序列的总体趋势,而且可以详细达到拟合的目的。实验表明,该方法可有效地用于时间序列相似度匹配。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号