首页> 外文期刊>Journal of information and computational science >Online Kinect Handwritten Digit Recognition Based on Dynamic Time Warping and Support Vector Machine
【24h】

Online Kinect Handwritten Digit Recognition Based on Dynamic Time Warping and Support Vector Machine

机译:基于动态时间规整和支持向量机的在线Kinect手写数字识别

获取原文
获取原文并翻译 | 示例

摘要

Handwriting in-space from Kinect depth and color information is a challenging task due to the high variability of signature characteristics for different individuals. In this paper, a user-friendly human computer interaction system is proposed and implemented based on Kinect handwriting. The fingertip is firstly tracked by our detection method in every depth frame to generate 3D trajectory of handwriting, and then normalization and smoothing are performed before feature extraction. On this basis, the time sequence feature of 3D signature can be captured as an online character recognition method, and a joint recognition framework is proposed based on DTW and SVM for input vectors of different lengths. The evaluation on a handwriting in-space dataset of digits from 0 to 9 shows that the proposed recognition scheme can offer a high recognition accuracy and a satisfying robustness to noisy data in digit recognition test even with small training number. Therefore, the method can be successfully applied in many Human Computer Interaction applications in real world.
机译:由于不同个人的签名特征差异很大,因此从Kinect深度和颜色信息进行空间内手写是一项具有挑战性的任务。本文提出了一种基于Kinect手写的用户友好型人机交互系统。首先通过我们的检测方法在每个深度帧中跟踪指尖,以生成笔迹的3D轨迹,然后在特征提取之前执行归一化和平滑处理。在此基础上,可以将3D签名的时间序列特征捕获为在线字符识别方法,并针对不同长度的输入矢量,提出了一种基于DTW和SVM的联合识别框架。对手写数字空间数据集(从0到9)的评估表明,即使在训练次数较少的情况下,所提出的识别方案也可以为数字识别测试中的嘈杂数据提供高识别精度和令人满意的鲁棒性。因此,该方法可以成功地应用于现实世界中的许多人机交互应用中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号