首页> 外文期刊>Journal of information and optimization sciences >Sentiment classification of twitter data belonging to renewable energy using machine learning
【24h】

Sentiment classification of twitter data belonging to renewable energy using machine learning

机译:使用机器学习对属于可再生能源的Twitter数据进行情感分类

获取原文
获取原文并翻译 | 示例

摘要

The paper disccuses about the sentimenal analysis process which is a classification problem. To study the emotions of people about alternate energy sources, we carried out sentiment analysis on Twitter data. Sentiment analysis is used to analyze opinions of the user for decision making with the help of natural language processing techniques. In this paper, we carried out sentiment analysis and classification task of tweets belonging to #RenewableEnergy. We applied five different machine learning algorithms for the classification of tweets into three categories. We have carried classification without feature selection technique and with feature selection techniques. We have used CfsSubsetEvaluation and Information Gain feature selection methods to reduce the number of features from the dataset. The result obtained through the techniques followed in this paper, shows that the accuracy of sentiment classification is better with feature selection methods. The best accuracy (92.96%) is achieved with Support Vector Machine(Using PUK Kernel) and CfsSubsetEval feature selection method.
机译:本文讨论了作为分类问题的情感分析过程。为了研究人们对替代能源的情绪,我们对Twitter数据进行了情感分析。情感分析用于分析用户的意见,以便借助自然语言处理技术进行决策。在本文中,我们进行了属于#RenewableEnergy的推文的情感分析和分类任务。我们将五种不同的机器学习算法用于将推文分为三类。我们进行的分类没有特征选择技术,而有特征选择技术。我们使用了CfsSubsetEvaluation和Information Gain特征选择方法来减少数据集中特征的数量。通过本文后续技术获得的结果表明,使用特征选择方法可以更好地进行情感分类。支持向量机(使用PUK内核)和CfsSubsetEval特征选择方法可实现最佳准确性(92.96%)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号