...
首页> 外文期刊>Journal of Heat Transfer >Numerical Simulation of Evaporating Two-Phase Flow in a High-Aspect-Ratio Microchannel with Bends
【24h】

Numerical Simulation of Evaporating Two-Phase Flow in a High-Aspect-Ratio Microchannel with Bends

机译:高纵横比微弯弯管中蒸发两相流的数值模拟

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Despite the demand for high-performance, two-phase cooling systems, high-fidelity simulations of flow boiling in complex microchannel geometries remains a challenging numerical problem. We conduct a first-principles-based simulation of an evaporating two-phase flow in a high-aspect-ratio microchannel with bends using a volume of fluid-based numerical model. For the case shown, the lower horizontal section of the microchannel has a constant flux of 20 W/cm~2 applied to the wetted wall area (heat flux at the base of 133 W/cm~2); HFE-7100 vapor and liquid enter the channel at 2 m/s. The three-dimensional channel geometry requires a refined near-wall numerical mesh to resolve thin liquid film flow features. The recently developed saturated-interface-volume phase change model (Int J Heat Mass Trans 93:945-956, 2016) is implemented for prediction of mass and energy exchange across the liquid-vapor interface at a low computational cost (~80 hr; 6-core parallelization on Intel Xeon E3-1245V3). The model reveals transport details including the interface shape and fluid velocity and temperature fields. The interfacial temperature remains fixed at saturation with smooth velocity contours near the interface. The highest evaporation flux is located in the thin liquid film region near the heated wall.
机译:尽管需要高性能的两相冷却系统,但是在复杂的微通道几何结构中对流动沸腾进行高保真模拟仍然是一个具有挑战性的数值问题。我们使用基于流体的数值模型,对具有弯曲的高纵横比微通道中的蒸发两相流进行基于第一原理的模拟。对于所示的情况,微通道的下部水平部分向湿壁区域施加20 W / cm〜2的恒定通量(底部热通量为133 W / cm〜2); HFE-7100的蒸气和液体以2 m / s的速度进入通道。三维通道的几何形状需要完善的近壁数值网格,以解决液膜流动特征。实现了最近开发的饱和界面体积相变模型(Int J Heat Mass Trans 93:945-956,2016),用于以较低的计算成本(〜80 hr;大约80 hr;大约80 hr; Intel Xeon E3-1245V3上的6核并行化)。该模型揭示了运输细节,包括界面形状,流体速度和温度场。界面温度保持稳定,并在界面附近保持平滑的速度轮廓。最高的蒸发通量位于加热壁附近的液膜区域。

著录项

  • 来源
    《Journal of Heat Transfer》 |2017年第2期|020901.1-020901.1|共1页
  • 作者单位

    School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907-2088 USA;

    School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907-2088 USA;

    School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907-2088 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号