首页> 美国卫生研究院文献>Biomicrofluidics >Lattice Boltzmann numerical simulation and experimental research of dynamic flow in an expansion-contraction microchannel
【2h】

Lattice Boltzmann numerical simulation and experimental research of dynamic flow in an expansion-contraction microchannel

机译:伸缩微通道内动态流的格子Boltzmann数值模拟和实验研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper applies the lattice Boltzmann method (LBM) to a 3D simulation of micro flows in an expansion-contraction microchannel. We investigate the flow field under various inlet flow rates and cavity structures, and then systematically study the flow features of the vortex and Dean flow in this channel. Vortex formation analysis demonstrates that there is no observable vortex generated when the inlet flow rate is low enough. As the inlet flow rate increases, a small vortex first appears near the inlet, and then this vortex region will keep expanding until it fully occupies the cavity. A smaller cavity width may result in a larger vortex but the vortex is less influenced by cavity length. The Dean flow features at the outlet become more apparent with increasing inlet flow rate and more recirculation regions can be observed in the cross-section under over high inlet flow rate. In order to support the simulation results, some experimental processes are conducted successfully. It validates that the applied model can accurately characterize the flow in the microchannel. Results of simulations and experiments in this paper provide insights into the design and operation of microfluidic systems for particle/cell manipulation.
机译:本文将格子玻尔兹曼方法(LBM)应用于膨胀-收缩微通道中微流的3D模拟。我们研究了各种入口流速和腔结构下的流场,然后系统地研究了该通道中涡流和迪安流的流动特征。涡流形成分析表明,当入口流量足够低时,不会产生可观察到的涡流。随着入口流速的增加,一个小的涡流首先出现在入口附近,然后该涡流区域将继续膨胀,直到完全占据空腔为止。较小的腔体宽度可能会导致较大的涡旋,但涡旋受腔体长度的影响较小。随着入口流量的增加,出口处的Dean流动特征变得更加明显,在高入口流量的情况下,横截面中可以观察到更多的再循环区域。为了支持仿真结果,成功地进行了一些实验过程。它验证了所应用的模型可以准确地表征微通道中的流量。本文的仿真和实验结果为深入研究用于颗粒/细胞处理的微流体系统的设计和操作提供了见识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号