首页> 外文期刊>Journal of guidance, control, and dynamics >Recursive Polynomial Minimum Mean-Square Error Estimation with Applications to Orbit Determination
【24h】

Recursive Polynomial Minimum Mean-Square Error Estimation with Applications to Orbit Determination

机译:递归多项式最小均方误差估计及其在轨道确定中的应用

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a systematic generalization of the linear update structure associated with the extended Kalmanfilter for high-order polynomial estimation of nonlinear dynamical systems. The minimummean-square error criterionis used as the cost function to determine the optimal polynomial update during the estimation process. The high-orderseries representation is implemented effectively using differential algebra techniques.Numerical examples showthat theproposed algorithm, named the high-order differential algebra Kalman filter, provides superior robustness and/ormean-square error performance as compared to linear estimators under the condition considered.
机译:本文提出了与扩展卡尔曼滤波器相关联的线性更新结构的系统概括,用于非线性动力学系统的高阶多项式估计。最小均方误差准则用作成本函数,以确定估计过程中的最佳多项式更新。数值算例表明,所提出的算法称为高阶微分代数卡尔曼滤波器,与线性估计量相比,在考虑的条件下,具有更高的鲁棒性和/或均方误差性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号